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Space-charge waves in the wiggler field of a Raman free-electron laser

Joseph E. Willett and Bruce Bolon
Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, Missouri 65211

Yildirim Aktas
Department of Physics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223

Hassan Mehdian
Department of Physics, Teacher Training University, Tehran, Iran

~Received 6 October 1997!

A waveguide filled with a relativistic electron beam that passes through a helical wiggler magnetic field and
a uniform axial magnetic field is considered. The propagation of two types of space-charge waves in this
device is analyzed. An electrostatic approximation is employed that is based on Gauss’s law and the require-
ments that the magnetic field of the wave and the curl of the electric field of the wave both be zero in the
electron-beam reference frame. These equations transformed into the laboratory reference frame are shown to
be more accurate than a system of equations that includes Gauss’s law in conventional form. A dispersion
relation is derived with the combined effects of the wiggler and axial magnetic fields and the waveguide
boundary included. Some numerical results are presented for both plasma and cyclotron types of space-charge
waves.@S1063-651X~98!04406-7#

PACS number~s!: 41.60.Cr, 52.75.Ms
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I. INTRODUCTION

In a free-electron laser~FEL!, a relativistic electron beam
radiates as a result of oscillations induced by its pass
through a wiggler. The conventional wiggler is a static ma
netic field that is periodic along the beam axis in the labo
tory reference frame. It is a propagating electromagn
wave in the electron-beam reference frame~beam frame!. As
viewed in the beam frame, the wiggler wave in a Ram
FEL backscatters off of a space-charge wave. A realistic
oretical treatment of this stimulated Raman scattering p
cess requires inclusion of the effects of the wiggler field
the propagation of the space-charge wave. Freund
Sprangle@1# have developed a theory of space-charge w
propagation through a wiggler in the presence of an a
guide magnetic field with the beam cross section assume
be infinite. The combined effects of these two magne
fields can be quite large as illustrated in a book by Freu
and Antonsen@2#.

A recent publication@3# by the authors of the presen
paper presents an analysis of a space-charge wave prop
ing through a waveguide filled with a relativistic electro
beam in the presence of wiggler and axial magnetic fie
The basic equations employed in the analysis inclu
Gauss’s law in the laboratory frame. A numerical study
cyclotronlike waves with large wave numbers and sm
phase velocities was carried out to illustrate the combi
effects of waveguide boundary and wiggler and axial m
netic fields. The purpose of the present study is to deriv
dispersion relation with a wider range of validity and car
out a numerical study of both plasma and cyclotron types
space-charge waves.

The present paper contains a laboratory-frame analys
space-charge waves that is equivalent to the beam-fr
electrostatic approximation. The waves are propaga
571063-651X/98/57~6!/7169~7!/$15.00
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through a cylindrical metallic waveguide completely fille
with a relativistic electron beam. A uniform, static axi
magnetic field and a static, spatially periodic magnetic w
gler field are present. In Sec. II, equations are introduced
comprise the beam-frame Gauss’s law and requirements
the magnetic field of the wave and the curl of the elect
field of the wave both be zero in the beam frame. An equi
lent laboratory-frame formulation that includes the lineariz
continuity and momentum transfer equations is applied to
analysis of space-charge waves in the absence of the wig
to demonstrate its validity. In Sec. III, the wiggler magne
field is represented in an idealized one-dimensional appr
mation and a solution of the basic laboratory-frame eq
tions is represented as truncated Fourier and Fourier-Be
series. A derivation of the dispersion relation is then summ
rized. In Sec. IV, the results of a numerical study of t
effects of the waveguide boundary, wiggler field, and ax
magnetic field on the two types of space-charge waves
discussed and some conclusions are presented.

II. ELECTROSTATIC APPROXIMATION

When a space-charge wave has a phase velocity rela
to the medium through which it propagates that is mu
smaller than the speed of lightc, the magnetic field associ
ated with the wave may be neglected. This is usually the c
in the beam frame for a space-charge wave in a Raman F
Consequently, the space- and time-dependent beam-fr
electric fielddEB associated with the wave satisfies the tw
basic differential equations of electrostatics,

“•dEB54pdrB ~1!

and

“3dEB50, ~2!
7169 © 1998 The American Physical Society
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7170 57WILLETT, BOLON, AKTAS, AND MEHDIAN
wheredrB is the charge-density perturbation associated w
the wave. In this approximation~referred to herein as th
electrostatic approximation!, the beam-frame magnetic-fiel
perturbation is

dBB50. ~3!

Three of the beam-frame Maxwell equations are satisfi
namely, Gauss’s law@Eq. ~1!#, Faraday’s law

“3dEB52
1

c

]dBB

]t
, ~4!

and Gauss’s law for magnetism

“•dBB50. ~5!

The Ampère-Maxwell equation is not satisfied exactly in th
electrostatic approximation and is not employed in the an
sis.

It is frequently convenient to develop FEL theory in th
laboratory frame. Since Gauss’s law is not invariant in fo
under a Lorentz transformation when the Ampe`re-Maxwell
equation is not satisfied, it must be transformed separa
into the laboratory frame. This yields the modified form
Gauss’s law,

“•dE2
1

c
vi•F“3dB2S 4p

c
dJ1

1

c

]dE

]t D G54pdr,

~6!

wheredE, dB, dJ, anddr are the laboratory-frame perturba
tions of the electric field, magnetic field, current density, a
charge density, respectively, andvi is the axial component o
the electron beam velocity in the absence of the wave. Eq
tion ~3! may be transformed into

g iS dB2
1

c
vi3dED2

g i
2

~g i11!c2 vi~vi•dB!50, ~7!

where the Lorentz factor for the reference-frame transform
tion is

g i5~12v i
2c22!21/2. ~8!

The two homogeneous Maxwell equations@Eqs.~4! and~5!#
comprise a covariant pair that may be written in the sa
form in the laboratory frame, i.e.,

“3dE52
1

c

]dB

]t
, ~9!

“•dB50. ~10!

Note the Eq.~10! is redundant for waves with a time depe
dence of the form exp(2ivt).

A laboratory-frame analysis of an axisymmetric spa
charge wave in a cylindrical metallic waveguide complet
filled with a relativistic electron beam will be presented. T
wave will be assumed to be approximately electrostatic
the beam frame. With the beam and waveguide axis take
the z axis,
h

d,

-

ly

d

a-

a-

e

-

n
as

vi5 ẑv i . ~11!

The total electric field, magnetic field, electron density, a
electron fluid velocity may be written in the form

E5dE, ~12!

B5B01dB, ~13!

n5n01dn, ~14!

v5v01dv. ~15!

In the unperturbed state, the electric field is assumed to
negligible and the magnetic fieldB0 is the sum of a static,
spatially periodic wiggler fieldBw and a uniform, static axia
magnetic fieldẑ, B0z ; the electron densityn0 is uniform and
constant, and the electron fluid velocityv0 is the sum of the
transverse velocityvW ~due to passage through the wiggle!
and the uniform, constant axial velocityẑv i . The charge-
density perturbationdr and the linearized current densit
perturbationdJ are given by

dr52edn ~16!

and

dJ52e~n0dv1v0dn!, ~17!

where2e is the electron charge. Equations~6! and~7! may
be expressed in the form

“•dE2
v i

c F ẑ•“3dB1S 4pe

c D ~n0dvz1v idn!2
1

c

]dEz

]t G
524pedn, ~18!

dB2
v i

c
ẑ3dE2

g iv i
2

~g i11!c2 dBzẑ50. ~19!

The basic equations also include Eq.~9! and the linearized
continuity and momentum transfer equations

]dn

]t
1n0“•dv1~“dn!•v050, ~20!

]dv

]t
1v0•“dv1dv•“v052e~g0m0!21@dE2c22v0v0•dE

1c21dv3B01c21v03dB

2g0
2c23~v03B0!v0•dv#, ~21!

where

g05~12v0
2c22!21/2. ~22!

Although the wiggler induced velocity and axial velocity ar
in general, relativistic, the space-charge oscillation veloc
dv is assumed to be nonrelativistic.

To illustrate the significance of using the modified for
of Gauss’s law rather than the conventional form, spa
charge wave propagation through the beam-filled wavegu
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57 7171SPACE-CHARGE WAVES IN THE WIGGLER FIELD OF . . .
will first be analyzed with no wiggler present. In this cas
the unperturbed magnetic field, electron fluid velocity, a
Lorentz factor reduce to

B05 ẑB0 , ~23!

v05 ẑv i , ~24!

g05g i . ~25!

A solution of the foregoing linear equations can be expres
in the form

dE5 r̂dEr1 ẑdEz , ~26!

dEr5dÊrJ1~p0vr /R!exp@ i ~kz2vt !#, ~27!

dEz5dÊzJ0~p0vr /R!exp@ i ~kz2vt !#, ~28!

dB5 ûdBu , ~29!

dB05dB̂uJ1~p0vr /R!exp@ i ~kz2vt !#, ~30!

dn5dn̂J0~p0vr /R!exp@ i ~kz2vt !#, ~31!

dv5 r̂dv r1 ûdvu1 ẑdvz , ~32!

dv r5d v̂ rJ1~p0vr /R!exp@ i ~kz2vt !#, ~33!

dvu5d v̂uJ1~p0vr /R!exp@ i ~kz2vt !#, ~34!

dvz5d v̂zJ0~p0vr /R!exp@ i ~kz2vt !#. ~35!

HereJ0 andJ1 are Bessel functions of the first kind of ord
0 and 1, respectively,p0n ~with n51,2,3,...! is thenth zero of
J0 , andR is the electron beam radius and waveguide in
radius. With the unperturbed beam velocityv i , wave num-
ber k, and wave angular frequencyv taken to be positive,
the beam velocity and phase velocity are in the positivz
direction in the laboratory frame. Substitution of Eqs.~26!–
~35! into Eqs.~9!, ~18!, ~19!, ~20!, and ~21! leads to seven
linear, homogeneous algebraic equations in the seven
known amplitudesdÊr , dÊz , dB̂u , dn̂, d v̂ r , d v̂u , and
dvz . The necessary and sufficient condition for a nontriv
solution yields the laboratory-frame dispersion relation

p0v
2

g i
2~k2vv ic22!2R2 1

~V0
22v̄2!~v̄22vp

2g i
22!

v̄2~V0
21vp

2g i
222v̄2!

50,

~36!

where V0 and vp are the laboratory-frame cyclotron fre
quency and plasma frequency given by

V05eB0z /~g0m0c!, ~37!

vp5S 4pe2n0

g0m0c D 1/2

~38!

with g0 set equal tog i since the wiggler is absent, and

v̄5v2kv i . ~39!
,
d

d

r

n-

l

The above dispersion relation can be transformed into
beam frame by use of

vB5g i~v2kv i!, ~40!

kB5g i~k2vv ic22!, ~41!

vpB5vp , ~42!

V0B5g iV0 , ~43!

where vB , kB , vpB , and V0B are the wave angular fre
quency, wave number, plasma frequency, and cyclotron
quency in the beam frame. The result is

p0v
2

kB
2R2 1

~V0B
2 2vB

2 !~vB
22vpB

2 !

vB
2~V0B

2 1vpB
2 2vB

2 !
50, ~44!

which is the well-known beam-frame dispersion relation.
the conventional Gauss’s law were employed rather than
modified form, the procedure would yield

p0v
2

k~k2vv ic22!R2 1
~V0

22v̄2!~v̄22vp
2g i

22!

v̄2~V0
21vp

2g i
222v̄2!

50 ~45!

in the laboratory frame, which transforms to

p0v
2

kB
2R2 1

~11vBkB
21v ic22!~V0B

2 2vB
2 !~vB

22vpB
2 !

vB
2~V0B

2 1vpB
2 2vB

2 !
50

~46!

in the beam frame. This contains the erroneous factor
1vBkB

21v ic22).

III. DISPERSION RELATION WITH WIGGLER PRESENT

An analysis of an axisymmetric space-charge wave i
wiggler magnetic field will be presented next. As in Sec.
a uniform axial magnetic field is also present and the rela
istic electron beam completely fills the cylindrical metall
waveguide. The beam-frame electrostatic approximation
invoked. Although the analysis is carried out in the labo
tory frame, the basic equations are equivalent to the be
frame Gauss’s law and the requirements that the magn
field of the wave and the curl of the electric field of the wa
both be zero in the beam frame. The linearized continu
and momentum transfer equations are also employed.

In the unperturbed state, the electron densityn0 is uni-
form and constant, the electric fieldE0 is assumed to be
negligible, and the magnetic fieldB0 and electron velocityv0
are given by

B05 r̂BWcosQ1 ûBWsin Q1 ẑB0z , ~47!

v05 r̂vWcosQ1 ûvWsin Q1 ẑv i . ~48!

HereBW is the magnitude of the wiggler magnetic field,B0z
is the axial magnetic field,Q is defined as

Q5kWz2u, ~49!

vW is the transverse electron velocity given by
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vW5VWv i /~V02kWv i!, ~50!

v i is the axial electron velocity,VW is the relativistic cyclo-
tron frequency corresponding to the wiggler field given b

VW5eBW /~g0m0c!, ~51!

andg0 is the Lorentz factor given by

g05@12~vW
2 1v i

2!c22#21/2. ~52!

The quantitiesBW , B0z , vW , v i , kW , VW , V0 , andg0 are
independent of position and time.

The small-amplitude wave causes a perturbation tha
assumed to be of the form

dEr5dÊr0J1~p0vr /R!exp@ i ~kz2vt !#, ~53!

dEz5dÊz0J0~p0vr /R!exp@ i ~kz2vt !#, ~54!

dBu5dB̂u0J1~p0vr /R!exp@ i ~kz2vt !#, ~55!

dn5dn̂0J0~p0vr /R!exp@ i ~kz2vt !#, ~56!

dv r5~d v̂ r01d v̂ r1cosQ1d v̂ r2sin Q!J1~p0vr /R!

3exp@ i ~kz2vt !#, ~57!

dvu5~d v̂u01d v̂u1cosQ1d v̂u2 sin Q!J1~p0vr /R!

3exp@ i ~kz2vt !#, ~58!

dvz5d v̂z0J0~p0vr /R!exp@ i ~kz2vt !#. ~59!

These perturbation quantities are functions ofQ that are rep-
resented by Fourier series with only the dominant terms
tained. The quantitiesdEz , dn, and dvz , which vanish at
r 5R, are functions ofr that are represented by Fourie
Bessel series with only the dominant terms retained. T
radial dependences ofdEr , dBu , dv r , and dvu are then
represented in a consistent manner. In these truncated s
the dominant terms are assumed to be those that surviv
the limit of infinite waveguide radius or in the limit of zer
wiggler field.

Substitution of Eqs.~53!–~59! into Eqs. ~9!, ~18!, ~19!,
~20!, and~21! results in the following eleven linear homog
neous algebraic equations in the eleven unknown amplitu

p0vR21g i
2~dÊr02v ic21dB̂u0!1 ig i

2~k2vv ic22!dÊz0

14pedn̂024peg i
2n0v ic22d v̂z050, ~60!

dB̂u02v ic21dÊr050, ~61!

ikdÊr01povR21dÊz02 ivc21dB̂u050, ~62!

2 i v̄dn̂01n0p0vR21d v̂ r01 ikn0d v̂z050, ~63!

2 i v̄a1
21d v̂z01~Vv/2!~d v̂ r22d v̂u1!

1g0
21g i

22a1
21~e/m0!dÊz050, ~64!

2 i v̄d v̂ r01@V01~1/2!h#d v̂u01~1/2!p0va1
21R21vWd v̂ r1
is

-

e

ies,
in

s:

2~1/2!a2a1
21R21vWd v̂uz1~e/m0!g0

21

3@12~1/2!vW
2 c22#dÊr0

2~e/m0!g0
21c21v idB̂u050, ~65!

2 i v̄d v̂u02@V01~1/2!h#d v̂ r01~1/2!p0va1
21R21vWd v̂u1

1~1/2!a2a1
21R21vWd v̂ r250, ~66!

2 i v̄d v̂ r11vWa1
21~p0v2a2!R21d v̂ r0

1@kWv i1~1/4!h#d v̂ r21@V01~1/4!h#d v̂u1

2vWv ia1
21g0

21c22~e/m0!dÊz050, ~67!

2 i v̄d v̂ r22vWa2a1
21R21d v̂u02@kWv i2~1/4!h#d v̂ r1

1a1
21~hv ivW

212kWvW2VW!d v̂z0

1@V01~3/4!h#d v̂uz50, ~68!

2 i v̄d v̂u11vW~p0v2a2!a1
21R21d v̂u01@kWv i

2~1/4!h#d v̂uz1a1
21~VW1kWvW2hv ivW

21!d v̂z0

2@V01~3/4!h#d v̂ r150, ~69!

2 i v̄d v̂u21vWa2a1
21R21d v̂ r0

2@kWv i1~1/4!h#d v̂u12@V01~1/4!h#d v̂ r2

2vWv ig0
21c22~e/m0!a1

21dÊz050. ~70!

Here

h52kWv ig0
2vW

2 c22, ~71!

a152R22@J1~p0v!#22E
0

R

rJ0~p0vr /R!J1~p0vr /R!dr,

~72!

a252R21@J1~p0v!#22E
0

R

J0~p0vr /R!J1~p0vr /R!dr.

~73!

The necessary and sufficient condition for a nontrivial s
lution of Eqs.~60!–~70! may, after some extensive algebra
manipulation, be cast into the form

p0v
2

g i
2~k2vv ic22!2r2R2 1

~b2V0
22v̄2!~v̄22vb

2Fg0
21g i

22!

v̄2~b2V0
21vb

2Cg0
21g i

222v̄2!

50, ~74!

where

vb5~4pe2n0 /m0!1/2, ~75!

r5$11~VWV0vWv i
212d1!@V02kWv i

22v̄2#21%1/2,
~76!

b512kWv ivW
2 c22g0

2V0
21, ~77!
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C512~1/2!g i
2vW

2 c22, ~78!

and

F512g i
2V0VWvWv i

21@~v ivW
21VW1vW

2 v i
22V0!v ivW

21VW

2~v̄21d1!#212d2@~V02kWv i!
21VWV0vWv i

21

2~v̄21d1!#21. ~79!

The quantitiesd1 andd2 vanish in the limit of infinite wave-
guide radius and also in the limit of zero wiggler field. Th
are given by a hierarchy of algebraic equations that will
omitted for brevity. Equation~74! is the laboratory-frame
dispersion relation for space-charge waves in the wigg
The range of validity of this equation exceeds that of
corresponding dispersion relation derived in Ref.@3# since
the present derivation is not based on the approximation

12vk21v ic22>g i
22 ~80!

and

11vBkB
21c21>1. ~81!

Note thatvb is the nonrelativistic beam plasma frequency
the laboratory frame.

IV. NUMERICAL RESULTS AND DISCUSSION

The laboratory-frame analysis presented herein is ap
priate for two types of space-charge waves in a beam-fi
waveguide containing wiggler and axial magnetic fields. T
beam is treated as neutralized in the unperturbed state
the waves are treated as electrostatic in the beam frame.
sequently the present analysis, transformed to the b
frame with the wiggler field set equal to zero, yields t
same results as the quasistatic analysis of space-ch
waves in a plasma-filled waveguide by Trivelpiece a
Gould @4#. Equation ~44! is a quadratic equation for th
square of the frequencyvB

2 as a function of the square of th
wave numberkB

2 for axisymmetric space-charge waves in t
absence of a wiggler field. Choosing the minus sign in
quadratic formula forvB

2 yields the dispersion relation fo
plasma waves. The frequency of each mode increases m
tonically with increasing wave numberkB from zero atkB
50 and approaches the plasma frequencyvpB or the cyclo-
tron frequencyV0B , whichever is lower, askB approaches
infinity. The phase velocityvB /kB is generally sufficiently
small compared to the speed of lightc, so that the electro-
static approximation is valid for plasma space-charge wa
Choosing the plus sign in the quadratic formula forvB

2 yields
the dispersion relation for cyclotron waves. The frequen
vB of each mode decreases monotonically with increas
kB from the upper hydrid frequency (V0B

2 1vpB
2 )1/2 at kB

50 and approachesV0B or vpB , whichever is higher, askB
approaches infinity. Thus, in the electrostatic approximati
the cyclotron space-charge modes are backward waves
they have oppositely directed phase and group velocit
The electrostatic assumption restricts the validity of
theory to low phase velocities and frequencies below
cutoff of the empty waveguide. The electrostatic approxim
e

r.
e

o-
d
e
nd

on-
m

rge

e

no-

s.

y
g

,
.e.,
s.
e
e
-

tion is valid at large wave numbers for whichvB /kB!c and
also for weak magnetic fields (V0B!vpB), where the cyclo-
tron wave resembles a Langmuir wave for which the elect
current tends to cancel the effects of the displacement
rent. Otherwise, a fully electromagnetic treatment is requi
as given, e.g., by Ivanov and Alexov@5#.

At large wave numbers, it is convenient to employ
alternative classification of the two types of space-cha
waves. The waves that, in the infinite-wave-number limit a
in the absence of the wiggler field, have frequencies
proaching the cyclotron frequencyV0B will be referred to as
cyclotronlike; those that have frequencies approaching
plasma frequencyvpB will be referred to as plasmalike. In
the limit of infinite normalized beam-frame wave numb
(kBR→`), the present theory yields

vB
25g i

2b2V0
2 ~82!

for the cyclotronlike waves and

vB
25vb

2F`g0
21, ~83!

where, with the limitR→` also imposed,

F`512g i
2V0VWvWv i

21

3@~v ivW
21VW1vW

2 v i
22V0!v ivW

21VW

2vb
2F`g0

21g i
22#21, ~84!

for the plasmalike waves. Note thatb timesB0z is the effec-
tive axial magnetic field andF` times n0 is the effective
electron density in the presence of the wiggler field.

Numerical calculations have been made to illustrate
effects of waveguide radius, wiggler magnetic field, a
axial magnetic field on both types of space-charge wa
with large beam-frame wave numbers. Wiggler magne
field BW and wiggler wavelength 2p/kW were taken to be
760 G and 5 cm, respectively. The inner radiusR of the
beam-filled waveguide was taken to be 0.3 cm. Laborat
frame electron densityn0 was taken to be 1012 cm23 and
electron-beam energy (g021)m0c2 was taken to be 700 keV
corresponding to a Lorentz factorg0 of 2.37. Axial magnetic
field B0z was varied from 0 to 25.4 kG, which corresponds
a variation from 0 to 5 in the normalized laboratory-fram
relativistic cyclotron frequencyV0 /(ckv) associated with
B0z . The first (n51) mode was chosen for whichp0n

5p0152.405.
Figures 1–4 show the normalized beam-frame freque

vB /(ckW) of the cyclotronlike and plasmalike waves a
functions ofV0 /(ckW), which hereafter will be referred to
as the normalized axial magnetic field. Both group-I sta
orbits (V0,kWv i) and group-II orbits (V0.kWv i) are con-
sidered. The normalized beam-frame wave number w
taken askBR5` ~circles!, kBR5100 ~solid curve!, and
kBR510 ~dashed curve!. In the invariant phasekBzB
2vBtB5kz2vt, vB may be positive or negative withkB ,
k, andv taken as positive. The calculations were made fo
wave propagating in the negativezB direction and, conse-
quently, vB is negative. The minus sign is omitted in th
figures.
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Figures 1 and 2 illustrate the variation of the frequency
the cyclotronlike wave with axial magnetic fieldB0z for
group-I and group-II orbits, respectively. The circles cor
spond tokBR5` and were computed using Eq.~82!. The
frequency, which would be proportional toB0z in the ab-
sence of the wiggler, is modified by wiggler effects ma
fested through the factorsb and g i . The frequencies com
puted forkBR5100 using the complete dispersion relati
@Eq. ~79!# are in close agreement with those forkBR5` for
most values ofV0 /(ckv). An exception occurs in Fig. 1
when V0 /(ckv) approaches 0.53~where group-I orbits be-
come unstable! due to a reduction in the radius factorr and
the effective normalized beam-frame wave numberkBrR.
Exceptions also occur in Fig. 2 at some values
V0 /(ckW)<1, where the wave is not cyclotronlike forkBR
finite. Larger departures from the circles were found
kBR510 as expected.

Figures 3 and 4 illustrate the variation of the frequency
the plasmalike waves with axial magnetic fieldB0z for
group-I and group-II orbits, respectively. The circles cor

FIG. 1. Normalized beam-frame frequencyvB /(ckW) of the
cyclotronlike wave as a function of the normalized axial magne
field V0 /(ckW) for group-I orbits. The values of the normalize
beam-frame wave numberkBR are ` ~circles!, 100 ~solid curve!,
and 10~dashed curve!.

FIG. 2. Normalized beam-frame frequencyvB /(ckW) of the
cyclotronlike wave as a function of the normalized axial magne
field V0 /(ckW) for group-II orbits. The values of the normalize
beam-frame wave numberkBR are ` ~circles!, 100 ~solid curve!,
and 10~dashed curve!.
f

-

-

f

r

f

-

spond tokBR5` and were computed using Eq.~83! with
F` computed using Eq.~84! in the infinite-waveguide-radius
approximation, for whichd15d250. The rate of change o
the electron axial velocity with electron energy is propo
tional to a functionF0 that is equal to density factorF
@defined by Eq.~79!# with d1 , d2 , and v̄(5vBg i

21) set to
equal zero. For group-I orbits,F0>1 for B0z small and rises
abruptly, approaching infinity asB0z is increased to the value
that results in orbital instability@V0 /(ckw)50.53#. It is im-
portant to note that, unlikeF0 , the density factorF does not
become singular as the maximum value ofB0z for group-I
orbit stability is approached. Consequently, in Fig. 3 the f
quency of the plasmalike wave does not become large
V0 /(ckv) approaches 0.53. In Fig. 4, no frequencies
shown forV0 /(ckv),1.2; the plasmalike wave is unstab
in this negative-mass regime~where F0,0! not only for
kBR5` but for kBR5100 andkBR510 as well. The plas-
malike waves withkBR5100 ~solid curve! and kBR5`

c

c

FIG. 3. Normalized beam-frame frequencyvB /(ckW) of the
plasmalike wave as a function of the normalized axial magn
field V0 /(ckW) for group-I orbits. The values of the normalize
beam-frame wave numberkBR are ` ~circles!, 100 ~solid curve!,
and 10 ~dashed curve!. The waveguide radiusR is also infinite
whenkBR is infinite.

FIG. 4. Normalized beam-frame frequencyvB /(ckW) of the
plasmalike wave as a function of the normalized axial magn
field V0 /(ckW) for group-II orbits. The values of the normalize
beam-frame wave numberkBR are ` ~circles!, 100 ~solid curve!,
and 10 ~dashed curve!. The waveguide radiusR is also infinite
whenkBR is infinite.
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~circles! have significantly different frequencies sinceR
53 mm for the former case andR5` for the latter case.
Frequencies computed forkBR5100 using Eq.~74! with r
andF given by Eqs.~76! and~79! in the infinite-waveguide-
radius approximation, for whichd15d250, however, agree
with those computed using Eqs.~83! and ~84! to three sig-
nificant figures. It is interesting to note that Eq.~84! is a
quadratic equation forF` . The smaller root was used i
Figs. 3 and 4. The larger root predicts stable waves w
kBR5` and R5` for V0 /(ckv),0.26 and forV0 /(ckv)
,2.2 with group-I and group-II orbits, respectively.

A system of laboratory-frame equations for the elect
field, magnetic field, electron density, and electron veloc
was introduced herein that is equivalent to the system
beam-frame equations in the electrostatic approximat
The validity of this new system was demonstrated by de
ing the dispersion relation for space-charge waves in a wa
guide filled with a relativistic electron beam. It was show
that an error would have resulted if the conventional form
Gauss’s law had been employed in the laboratory frame.
new system of equations was then applied to obtain the
persion relation for the space-charge waves in the pres
of a magnetic wiggler field. The resulting dispersion relati
was cast into the form it would assume in the absence of
wiggler field but with the electron density, axial magne
field, and waveguide radius replaced by effective valu
modified by the wiggler. In general, calculation of these
fective values requires the solution of a long chain of al
braic equations, which will be presented elsewhere@6#. Nu-
merical calculations were made for space-charge waves
finite beam-frame wave numbers and finite beam and wa
guide radius. The negative mass instability was found, bu
singularity of the electron density factorF was found.

Free-electron laser theories may be developed in ei
the electron-beam reference frame or the laboratory re
ence frame. Equivalent results may be obtained in the
frames provided that the two sets of basic equations are
tirely equivalent. It was shown herein that electrosta
analyses based on the conventional form of Gauss’s law
h
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both frames are not equivalent. Errors in the dispersion r
tion for space-charge waves are only of second order
vB /kBc when derived in the beam frame, but are of fir
order when derived in the laboratory frame for a strong
relativistic beam. The present analysis was carried out in
laboratory frame using basic equations that were entir
equivalent to the basic equations of the beam frame. Ind
tical results could have been derived in the beam frame u
the conventional form of Gauss’s law, but this would ha
required treating the wiggler field as a propagating elec
magnetic wave.

The present theory can be used to compute the disper
relation for a space-charge wave in an FEL wiggler. Nume
cal results thereby obtained could be compared with Ram
FEL experiments. The theory developed herein is based
the assumption that the electron beam completely fills
waveguide. Since this cannot be achieved experimentally
experiment could be performed with the ratio of the be
radius to the waveguide inner radius as near unity as is
sible. Measurements of the radiation frequency, electr
beam energy, electron density, wiggler wavelength, wa
guide inner radius, and axial magnetic field would
required. Calculations of the radiation frequency could th
be made using the phase-matching conditions and disper
relations for the space-charge wave and the electromagn
wave in the wiggler. This would determine if the radi
waveguide boundary conditions improve the agreement w
experimental results.

In order to use the results of previous Raman FEL exp
ments, the present authors plan to extend the theory to
case of a partially filled waveguide. Typical values of t
ratio of the beam radius to the waveguide inner radius ra
from 0.2 to 0.35~see, e.g., Refs.@7–10#!. Studies of the
effects of the wiggler on the electromagnetic wave are a
underway. The purpose of this research is to provide
method of obtaining theoretical values for observable qu
tities such as the radiation frequency and the growth r
based on realistic treatment of the space-charge and ele
magnetic waves in the Raman FEL wiggler.
,
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